\(\int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx\) [1511]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 490 \[ \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (6 A b^3-63 a^3 B-21 a b^2 B-2 a^2 b (41 A+70 C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^3 d \sqrt {\sec (c+d x)}}-\frac {2 (a-b) \sqrt {a+b} \left (6 A b^2-a^2 (25 A-63 B+35 C)+3 a b (19 A-7 B+35 C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 \left (3 A b^2+42 a b B+5 a^2 (5 A+7 C)\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{105 a d}+\frac {2 (3 A b+7 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 A (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d} \]

[Out]

2/7*A*(a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^(7/2)*sin(d*x+c)/d+2/105*(3*A*b^2+42*B*a*b+5*a^2*(5*A+7*C))*sec(d*x+c)
^(3/2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a/d+2/35*(3*A*b+7*B*a)*sec(d*x+c)^(5/2)*sin(d*x+c)*(a+b*cos(d*x+c))^(
1/2)/d-2/105*(a-b)*(6*A*b^3-63*B*a^3-21*B*a*b^2-2*a^2*b*(41*A+70*C))*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/
2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1
/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d/sec(d*x+c)^(1/2)-2/105*(a-b)*(6*A*b^2-a^2*(25*A-63*B+35*C)+3*a*b*(19*
A-7*B+35*C))*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a
+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d/sec(d*x+c)^(1/2
)

Rubi [A] (verified)

Time = 1.77 (sec) , antiderivative size = 490, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {4306, 3126, 3134, 3077, 2895, 3073} \[ \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx=-\frac {2 (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \left (-\left (a^2 (25 A-63 B+35 C)\right )+3 a b (19 A-7 B+35 C)+6 A b^2\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (5 a^2 (5 A+7 C)+42 a b B+3 A b^2\right ) \sqrt {a+b \cos (c+d x)}}{105 a d}-\frac {2 (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \left (-63 a^3 B-2 a^2 b (41 A+70 C)-21 a b^2 B+6 A b^3\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{105 a^3 d \sqrt {\sec (c+d x)}}+\frac {2 (7 a B+3 A b) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}{35 d}+\frac {2 A \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}}{7 d} \]

[In]

Int[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(9/2),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(6*A*b^3 - 63*a^3*B - 21*a*b^2*B - 2*a^2*b*(41*A + 70*C))*Sqrt[Cos[c + d*x]]*Csc[c + d
*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(
1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^3*d*Sqrt[Sec[c + d*x]]) - (2*(a - b)*
Sqrt[a + b]*(6*A*b^2 - a^2*(25*A - 63*B + 35*C) + 3*a*b*(19*A - 7*B + 35*C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*E
llipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - S
ec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^2*d*Sqrt[Sec[c + d*x]]) + (2*(3*A*b^2 + 42
*a*b*B + 5*a^2*(5*A + 7*C))*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(105*a*d) + (2*(3*A*b +
7*a*B)*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(35*d) + (2*A*(a + b*Cos[c + d*x])^(3/2)*Sec[
c + d*x]^(7/2)*Sin[c + d*x])/(7*d)

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx \\ & = \frac {2 A (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{7} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \cos (c+d x)} \left (\frac {1}{2} (3 A b+7 a B)+\frac {1}{2} (5 a A+7 b B+7 a C) \cos (c+d x)+\frac {1}{2} b (2 A+7 C) \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 (3 A b+7 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 A (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{35} \left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} \left (3 A b^2+42 a b B+5 a^2 (5 A+7 C)\right )+\frac {1}{4} \left (44 a A b+21 a^2 B+35 b^2 B+70 a b C\right ) \cos (c+d x)+\frac {1}{4} b (16 A b+14 a B+35 b C) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 \left (3 A b^2+42 a b B+5 a^2 (5 A+7 C)\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{105 a d}+\frac {2 (3 A b+7 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 A (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {\left (8 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{8} \left (-6 A b^3+63 a^3 B+21 a b^2 B+2 a^2 b (41 A+70 C)\right )+\frac {1}{8} a \left (84 a b B+5 a^2 (5 A+7 C)+3 b^2 (17 A+35 C)\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{105 a} \\ & = \frac {2 \left (3 A b^2+42 a b B+5 a^2 (5 A+7 C)\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{105 a d}+\frac {2 (3 A b+7 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 A (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}-\frac {\left ((a-b) \left (6 A b^2-a^2 (25 A-63 B+35 C)+3 a b (19 A-7 B+35 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{105 a}-\frac {\left (\left (6 A b^3-63 a^3 B-21 a b^2 B-2 a^2 b (41 A+70 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{105 a} \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (6 A b^3-63 a^3 B-21 a b^2 B-2 a^2 b (41 A+70 C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^3 d \sqrt {\sec (c+d x)}}-\frac {2 (a-b) \sqrt {a+b} \left (6 A b^2-a^2 (25 A-63 B+35 C)+3 a b (19 A-7 B+35 C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 \left (3 A b^2+42 a b B+5 a^2 (5 A+7 C)\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{105 a d}+\frac {2 (3 A b+7 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 A (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3611\) vs. \(2(490)=980\).

Time = 23.96 (sec) , antiderivative size = 3611, normalized size of antiderivative = 7.37 \[ \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx=\text {Result too large to show} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(9/2),x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((-2*(-82*a^2*A*b + 6*A*b^3 - 63*a^3*B - 21*a*b^2*B - 140*a^2*b*C
)*Sin[c + d*x])/(105*a^2) + (2*Sec[c + d*x]^2*(8*A*b*Sin[c + d*x] + 7*a*B*Sin[c + d*x]))/35 + (2*Sec[c + d*x]*
(25*a^2*A*Sin[c + d*x] + 3*A*b^2*Sin[c + d*x] + 42*a*b*B*Sin[c + d*x] + 35*a^2*C*Sin[c + d*x]))/(105*a) + (2*a
*A*Sec[c + d*x]^2*Tan[c + d*x])/7))/d + (2*((-82*a*A*b)/(105*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (2
*A*b^3)/(35*a*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (3*a^2*B)/(5*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c
+ d*x]]) - (b^2*B)/(5*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (4*a*b*C)/(3*Sqrt[a + b*Cos[c + d*x]]*Sqr
t[Sec[c + d*x]]) + (5*a^2*A*Sqrt[Sec[c + d*x]])/(21*Sqrt[a + b*Cos[c + d*x]]) - (31*A*b^2*Sqrt[Sec[c + d*x]])/
(105*Sqrt[a + b*Cos[c + d*x]]) + (2*A*b^4*Sqrt[Sec[c + d*x]])/(35*a^2*Sqrt[a + b*Cos[c + d*x]]) + (a*b*B*Sqrt[
Sec[c + d*x]])/(5*Sqrt[a + b*Cos[c + d*x]]) - (b^3*B*Sqrt[Sec[c + d*x]])/(5*a*Sqrt[a + b*Cos[c + d*x]]) + (a^2
*C*Sqrt[Sec[c + d*x]])/(3*Sqrt[a + b*Cos[c + d*x]]) - (b^2*C*Sqrt[Sec[c + d*x]])/(3*Sqrt[a + b*Cos[c + d*x]])
- (82*A*b^2*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(105*Sqrt[a + b*Cos[c + d*x]]) + (2*A*b^4*Cos[2*(c + d*x)]*Sq
rt[Sec[c + d*x]])/(35*a^2*Sqrt[a + b*Cos[c + d*x]]) - (3*a*b*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*Sqrt[a
+ b*Cos[c + d*x]]) - (b^3*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*a*Sqrt[a + b*Cos[c + d*x]]) - (4*b^2*C*Cos
[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*Sqrt[a + b*Cos[c + d*x]]))*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-2*(a +
 b)*(-6*A*b^3 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a +
 b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a
+ b)*(-6*A*b^2 + a^2*(25*A + 63*B + 35*C) + 3*a*b*(19*A + 7*(B + 5*C)))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*
Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]
- (-6*A*b^3 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2
]^2*Tan[(c + d*x)/2]))/(105*a^2*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*((b*Sqrt[Cos[(c + d*x)/2]^
2*Sec[c + d*x]]*Sin[c + d*x]*(-2*(a + b)*(-6*A*b^3 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Sqrt[Cos[c
 + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c +
d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(-6*A*b^2 + a^2*(25*A + 63*B + 35*C) + 3*a*b*(19*A + 7*(B + 5*C)))*S
qrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[
Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (-6*A*b^3 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Cos[c + d*x]
*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*a^2*(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c +
d*x)/2]^2]) - (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(-2*(a + b)*(-6*A*b^3 + 63*a^3*B + 21*a*
b^2*B + 2*a^2*b*(41*A + 70*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + C
os[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(-6*A*b^2 + a^2*(25*A + 63*
B + 35*C) + 3*a*b*(19*A + 7*(B + 5*C)))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a +
b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (-6*A*b^3 + 63*a^3*B + 21*a*b^
2*B + 2*a^2*b*(41*A + 70*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*a^2*
Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-1/2*((-6*A*b^3
 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^4) - ((a
+ b)*(-6*A*b^3 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c
+ d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x]
)^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + (a*(a + b)*(-6*A*b^2 + a^2*(25
*A + 63*B + 35*C) + 3*a*b*(19*A + 7*(B + 5*C)))*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipt
icF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*
x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - ((a + b)*(-6*A*b^3 + 63*a^3*B + 21*a*b^2*B + 2
*a^2*b*(41*A + 70*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a +
b)]*(-((b*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((a + b*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[
c + d*x])^2)))/Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (a*(a + b)*(-6*A*b^2 + a^2*(25*A + 63
*B + 35*C) + 3*a*b*(19*A + 7*(B + 5*C)))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/
2]], (-a + b)/(a + b)]*(-((b*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((a + b*Cos[c + d*x])*Sin[c + d*x])
/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + b*(-6*A*b^3 + 63*a
^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (-6
*A*b^3 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*T
an[(c + d*x)/2] - (-6*A*b^3 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])
*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (a*(a + b)*(-6*A*b^2 + a^2*(25*A + 63*B + 35*C) + 3*a*b*(19*A + 7*(B
+ 5*C)))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c
+ d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((-a + b)*Tan[(c + d*x)/2]^2)/(a + b)]) - ((a + b)*(-6*A*b
^3 + 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c +
d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1 - ((-a + b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1
 - Tan[(c + d*x)/2]^2]))/(105*a^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + ((-2*(a + b)*(-6*A*b^3
+ 63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x
])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(-6*A*b^2
 + a^2*(25*A + 63*B + 35*C) + 3*a*b*(19*A + 7*(B + 5*C)))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Co
s[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (-6*A*b^3 +
63*a^3*B + 21*a*b^2*B + 2*a^2*b*(41*A + 70*C))*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d
*x)/2])*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(1
05*a^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(6098\) vs. \(2(444)=888\).

Time = 24.38 (sec) , antiderivative size = 6099, normalized size of antiderivative = 12.45

method result size
parts \(\text {Expression too large to display}\) \(6099\)
default \(\text {Expression too large to display}\) \(6169\)

[In]

int((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c)^3 + (C*a + B*b)*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))*sqrt(b*cos(d*x + c
) + a)*sec(d*x + c)^(9/2), x)

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(9/2), x)

Giac [F]

\[ \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(9/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {9}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right ) \,d x \]

[In]

int((1/cos(c + d*x))^(9/2)*(a + b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2),x)

[Out]

int((1/cos(c + d*x))^(9/2)*(a + b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2), x)